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Abstract We establish a methodology for assimilating satellite observations of ice surface temperature
(IST) into a coupled ocean and sea-ice model. The method corrects the 2 m air temperature based on the
difference between the modeled and the observed IST. Thus the correction includes biases in the surface
forcing and the ability of the model to convert incoming parameters at the surface to a net heat flux.
A multisensor, daily, gap-free surface temperature analysis has been constructed over the Arctic region. This
study revealed challenges estimating the ground truth based on buoys measuring IST, as the quality of the
measurement varied from buoy to buoy. With these precautions we find a cold temperature bias in the
remotely sensed data, and a warm bias in the modeled data relative to ice mounted buoy temperatures,
prior to assimilation. As a consequence, this study weighted the modeled IST and the observed IST equally
in the correction. The impact of IST was determined for experiments with and without the assimilation of
IST and sea-ice concentration. We find that assimilation of remotely sensed data results in a cooling of IST,
which improves the timing of the snow melt onset. The improved snow cover in spring is only based on
observations from one buoy, thus additional good quality observations could strengthen the conclusions.
The ice cover and the sea-ice thickness are increased, primarily in the experiment without sea-ice
concentration assimilation.

1. Introduction

Arctic sea-ice and snow surface temperatures (IST) are of interest for both short term forecasts and in evalu-
ation of the impact of long term climate trends on the ice-atmosphere boundary (Hansen et al., 2010; Wang
& Key, 2003). This study focuses on the potential for assimilating Arctic IST from a remotely sensed product
into a coupled ocean and sea-ice model. A short term forecast �daysð Þ is an initial value problem. Improve-
ments to the initial state of the model will therefore impact the skill of the model over this timescale. Assim-
ilation of surface temperatures has been widely used to improve the boundary temperature over ocean (sea
surface temperature [SST]) in atmospheric and coupled models (While & Martin, 2013) and over land (land
surface temperature) in atmospheric models (McNider et al., 1994). Satellite IST is a relatively novel product
and few experiments have been carried out that include satellite observations of IST in modeling systems
(e.g., Merchant et al., 2013).

IST governs the upper boundary of the sea-ice thermodynamics and is important for the heat flux into the
sea ice and snow (Sturm et al., 2001, 2002), and as a consequence of this the growth and decay of these
layers. The lower sea-ice boundary is governed by the ocean, which in most cases is at or near the freezing
point. Arctic in situ observations are sparse and they are associated with relatively large uncertainties (Dybk-
jær et al., 2012; Rigor et al., 2000), thus it is hard to establish a good data set for verification and validation.
Automatic weather stations are the most accurate type of in situ observation; however, the spatial coverage
is limited and if placed on sea ice they are vulnerable to changing seasons and ice drift. The Danish Meteo-
rological Institute (DMI) has deployed a weather station on fast ice in a fjord near Qaanaaq in the North
Western part of Greenland for 3 winter periods (2014–2016) extending from approximately January to May.
These observations show a large temporal variability in the temperature 1 m above the snow or ice surface
(see, e.g., Høyer et al., 2017). The large variability is also found in the snow surface skin temperature but it is
quickly reduced when entering the snow and ice. This reduction in temperature variability occurs mainly
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due to the insulating effect caused by a snow layer on sea ice, which is a well-known behavior for snow cov-
ered surfaces (Schneebeli & Sokratov, 2004; Sturm et al., 1997).

One type of in situ observation of IST is made by ice mass balance buoys (IMBs), that use thermistor strings
to measure temperature profiles through the snow and sea ice (Jackson et al., 2013). The IMBs are used as a
validation tool as they follow the ice pack and provide observations scattered in time and space. One of the
main challenges with the IMBs is that it can be hard to determine the interfaces between air, snow, ice, and
water accurately. Large biases can occur if the observation is taken at the wrong vertical position, as the
temperature can vary significantly with depth, particularly in the snow, but also in the sea ice.

Observations of IST can also be made by remote sensing. Satellites provide an opportunity for unique spa-
tial coverage of sea-ice regions with several overpasses every day (see, e.g., Dybkjær et al., 2012; Hall et al.,
2004; Key & Haefliger, 1992). However, the infrared satellite observations are limited by cloud cover, which
can be persistent in the Arctic. The combination of large diurnal temperature variations and irregular sam-
pling intervals can cause averaged satellite observations to differ considerably from in situ point measure-
ments and modeled output of instantaneous temperatures. In addition, missing clouds in the cloud mask
may cause a cold bias in the IST product (Dybkjær et al., 2012). Remotely sensed observations of ocean and
land surface temperatures have been made for years, but sea-ice and snow surface temperature products
from satellites are less mature.

This study assesses the potential for integration of satellite IST observations into forced coupled ocean and
sea-ice models. We present two new advancements: (1) the generation of a multisatellite gap-free SST and
IST analysis product and (2) the inclusion of the satellite IST observations in a coupled ocean and ice model-
ing system with an assessment of the impact. The satellite observations are used for bias correction of the
surface forcing applied from an atmospheric forcing field. This approach requires an a priori examination of
the modeled IST error statistics obtained from a model simulation without IST assimilation.

The paper consists of six sections. Section 2 describes the satellite observations, section 3 the model setup,
section 4 the method applied to implement the remotely sensed temperatures in the model, and in section
5 the results and discussion. Finally, the conclusions can be found in section 6.

2. Satellite Observation

To generate a consistent satellite data set that covers the ice covered areas including the Marginal Ice Zone
(MIZ) and the open ocean, several satellite SST, and IST data sets are included in the analysis. The satellite
data are listed in Table 1 with an indication of spatial resolution and the surface type of observations
included in the data product.

The MODIS satellite products are obtained from the ESA GlobTemperature project, which utilizes the
MOD29/MYD29 1 km IST only products available from NASA (Riggs et al., 2006) and reformats them into a
common format for all GlobTemperature products. The Metop IASI satellite products have been obtained
from EUMETSAT version 6 of the IASI processor (T. August, personal communication, 2016) using Piece-Wise
Linear Regression retrievals. The product is the first guess estimate from the algorithm and provides all sky
IST observations. A reprocessed and improved product is now available from EUMETSAT upon request,

Table 1
Overview of the Level 2 (L2) Satellite Surface Temperature Products Considered

Sensor Obs type Resolution (km) Provider

Metop AVHRR SST, MIZT, IST 1 EUMETSAT OSI-SAF
MODIS Aqua IST 1 NASA 1 GlobTemperature
MODIS Terra IST 1 NASA 1 GlobTemperature
Metop IASI IST 12–40 EUMETSAT
NOAA AVHRR SST 4 NAVOCEANO
NOAA AVHRR SST 2 EUMETSAT OSI-SAF

Note. Obs Type is the surface measured. SST is the sea surface temperature, MIZT is the marginal ice zone tempera-
ture, and IST is the ice surface temperature. Metop IASI IST is the only product that observes surface temperatures
under cloudy conditions. This product is not included in the final product.
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using an additional Optimal Estimation algorithm that retrieves clear-sky observations. The Metop AVHRR
product contains SST, IST, and Marginal Ice Zone Temperature (MIZT) observations and is a preoperational
version of EUMETSAT OSI-205 product, described in Dybkjær et al. (2017). The NOAA AVHRR SST product
from the EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI-SAF) is the North Atlantic regional
product, OSI-202-b. The NAVOCEANO SST product is produced by the U.S. Naval Oceanographic Office
(NAVOCEANO) from NOAA AVHRR observations (May et al., 1998). This SST product has been shown to be
one of the most accurate SST products in the Arctic and has been used to reference other SST products
(Høyer et al., 2012, 2014). All satellite observations are level 2 (L2) observations and are limited by cloudy
conditions, except for the IASI product, which uses Microwave observations to infer the surface temperature
under cloudy conditions. The use of several satellite products increases the data coverage and the sampling
throughout the day which is particularly beneficial over sea ice to reduce the sampling effects. Note that
the Metop AVHRR product is the only one that covers both open ocean and sea ice.

Separate level 3 (L3) satellite fields were generated by aggregating the L2 orbit observations onto a fixed
spatial grid with a resolution of 0.058. One L3 field was generated for each satellite product in a preprocess-
ing step to the level 4 (L4) Optimal Interpolation (OI). The daily L3 fields were obtained by aggregating the
L2 satellite products within 36 h from the analysis time. The 72 h aggregation window was chosen from
analysis of hourly in situ observations and taking into account the sampling characteristics associated with
clear-sky polar orbiting satellite observations. The L3 aggregation also included quality control on the differ-
ent products. Quality levels 4 or 5 were accepted for the SST products (OSI-SAF NAR and NAVOCEANO) in
the Group for High Resolution SST (GHRSST) L2P format. This corresponds to observations being classified
as good or excellent by the satellite producer (see, e.g., Donlon et al. (2007) for definitions of GHRSST quality
levels). Only MODIS observations with a good sea-ice quality flag were allowed. After communication with
EUMETSAT, it was decided to discard IASI IST observations with a quality indicator above 3 (not related to
the GHRSST definition). The Metop AVHRR SST and IST observations classified as cloud free by the Polar Plat-
form Systems (PPS) cloud mask were included in the processing (Dybbroe et al., 2006).

A daily-varying surface mask was generated from a combination of the static land/sea mask and the daily
Sea Ice Concentration (SIC) from OSI-SAF (Eastwood et al., 2011) to further assist in the processing, merging,
and interpolation. The surface mask identifies areas with land, sea ice (SIC> 70%), MIZ (30%< SIC� 70%)
and open water (SIC� 30%). These ice concentration limits are used within the OSI-SAF to distinguish
between open water, open ice, and closed ice. In the L3 Metop AVHRR aggregation, all satellite observations
using the SST algorithm over sea-ice and all ice algorithm observations over open ocean were discarded.
See Dybkjær et al. (2012) for the different algorithm types. For all the other satellite products, observations
warmer than 38C over sea ice and colder than 248C in open ocean were discarded.

Several studies have reported the uncertainties of the satellite SST products to be around 0.58C when com-
pared against in situ observations from drifting buoys (Castro et al., 2016; Høyer et al., 2012). Similarly, the
performance of the satellite IST products has been assessed in several studies (Dybkjær et al., 2012; Hall
et al., 2004; Key et al., 1994), but the lack of good reference in situ data, as discussed above, makes these IST
validation results less reliable. For a first check of the consistency, we therefore compared the different L3
satellite products over the sea ice. Averaged time series were extracted for several areas throughout the
Arctic, and an example is shown in Figure 1 from the Lincoln Sea. The figure shows the variations in IST
with time scales of several days, as expected from the aggregation window of 72 h. Maximum temperatures
are reached in July and August and minimum temperatures in February. In general, all of the satellite prod-
ucts agree well on the temporal variability induced by weather events, but the IASI product displays a signif-
icantly higher absolute temperature and lower variability compared to the purely infrared 1 km products
from Metop AVHRR and MODIS. Note that some of the cold events seen in the infrared products could be a
result of cloud contamination. An offset is evident during all seasons, and it occasionally exceeds 58C. This
offset may originate from the microwave radiation algorithm that is enabled when one of the three cloud
tests are positive, because the signal originates from below the snow surface (Tonboe et al., 2011). The dif-
ference might also be due to the clear-sky effect present in the purely infrared products. However, analysis
of in situ observations of IST in the Arctic revealed that the average temperature difference between cloudy
and clear-sky cases for 72 h averages is about 20.58C (clear-sky being colder than all sky). The clear-sky
effect can thus not completely explain the observed difference between the IASI and the purely infrared sat-
ellite products.
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The OI method used to generate the L4 product assumes that the data are anomalies from a first guess field
and do not contain systematic biases. This is most likely not fulfilled for the IASI observations and it was
therefore decided not to include these data in the L4 generation, as it would violate the interpolation
assumptions and probably introduce inconsistencies in the L4 data set.

2.1. Construction of the Level 4 Product
The final L4 analysis product is a merged and interpolated daily field with a 0.058 resolution in latitude and
longitude that covers surface temperatures of the ocean, sea ice and MIZ. It was generated from 1 August
2012 to 30 September 2013. The OI method used to construct the merged and gap-free SST/IST analysis is
taken from the high latitude SST DMI processing scheme described in Høyer and She (2007) and Høyer
et al. (2014). As mentioned above, the OI estimation assumes we are working with anomalies on the ith
observation, f 0i , with associated errors, �i . The estimation at the interpolation point, f 00, can be described as

f 005
Xn

i51

ðf 0i 1�iÞpi1I0 (1)

where pi are the weights that have to be determined, I0 is the interpolation error, and n is the number of
observations. The primes indicate anomalies from a first guess value. The mean square interpolation error is
defined as:

I2
0 5

Xn

i51

ðf 0i 1�iÞpi2f 00

 !2

(2)

The optimal weights that result in the minimum interpolation error is found by finding the minimum of
equation (2). This is done by setting the derivatives of the error with respect to the weights equal to zero
and solving the equation. If it is assumed that the noise in one observation is not correlated with the noise
in the other observations, with the true function, f, we can derive the central equations for the estimation
problem

Xn

j51

f 0i f 0j pj1r2
�i pi5f 0i f 00 ði51; 2; . . . nÞ (3)

where pi denotes the optimal weights that are solved for and r2
�i is the error variance of the ith observation.

Equation (3) shows that the optimal estimation problem involves covariance between the individual obser-
vations f 0i f 0j and between the observations and the estimation point f 0i f 00 . These covariances, Cij, have been
calculated prior to the prediction and assumed to be constant in time. It is assumed they take the form of

Cij5expð2k � distc
ijÞ (4)

where distij is the distance in km between point i and j. The satellite observations were used to derive spa-
tially varying parameters, k and c, for the open ocean regions and spatially uniform values for the sea-ice

Figure 1. The different L3 satellite IST products for a region in the Lincoln Sea, North of Greenland (84–878N, 58–628W).
See Table 1 for the different satellite products and their characteristics.
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covered regions. On average, c was set to 0.62 for the open ocean
and 1 for the ice covered regions. Correspondingly, k is 0.19 ðkmcÞ21

for open ocean and 0.01 ðkmcÞ21 for ice covered regions. The differ-
ence between the ocean and ice covariance parameters reflects the
different physical conditions, where the ocean processes occur on sig-
nificantly smaller spatial scales than the atmospheric processes over
sea ice.

In the current implementation, we use the previous day’s analysis as
first guess field. The SST and IST observations from the current day are
therefore interpreted as anomalies with respect to the field from the
previous day. The search radius for the OI method is set to 100 km and
the maximum number of satellite observations included in the optimal
estimation is 16, where up to four observations having the highest cor-
relation with the estimation point are selected for each quadrant. The
average number of satellite observations included in the analysis is
about 15.9, indicating very high satellite data coverage within the
search limits. Due to the different physical conditions for ocean and
sea-ice surface temperature variability, separate guess variance statistics
have been derived for the open ocean and the sea-ice covered regions.
The SST first guess variance is similar to what was presented in Høyer
and She (2007) and Høyer et al. (2014). Over sea ice, the first guess IST
variability was derived using 1 year of Metop AVHRR L3 aggregated
observations. The previous day L4 field was subtracted from the L3 IST
observations and a spatial two-dimensional field of standard deviations
were calculated for 1 year of anomalies.

The first guess field and the error covariance used in the MIZ are
obtained from a weighted linear combination of the open water and

ice values, where the ice concentration was used as the weighting factor. An example of a daily SST/IST L4
field is shown in Figure 2 for 1 March 2013, which is the time of the year, where the maximum sea-ice
extent occurs. To spin up the L4 product for the 1 year generation, the initial field was started from a clima-
tology from 1 August 2012 and run for a month. Subsequently, the 1 September 2012 field was then used
as the first guess field for the run from 1 August 2012. This procedure ensured that the first guess field was
consistent with the conditions in year 2012 and the satellite products included in the analysis. The tempera-
ture differences from the beginning to the end of August were relatively small and only affected the first
few days of the runs.

3. Ocean and Sea-Ice Model

Operational state of the art Arctic Ocean and sea-ice models describe the three-dimensional flow of the
ocean, the horizontal flow of the sea ice and the thermodynamics of the ocean and the sea ice. In the case
of multicategory sea-ice models, they also describe the redistribution of sea ice between the different ice
thickness categories. The ocean and sea-ice model system at DMI (Madsen et al., 2016) consists of the
HYbrid Coordinate Ocean Model (HYCOM), e.g., (Chassignet et al., 2007) and the Community Ice CodE (CICE
(v4.0) (Hunke, 2001; Hunke & Dukowicz, 1997)) coupled with the Earth System modeling Framework (ESMF)
coupler (Collins et al., 2004). The horizontal resolution is approximately 10 km in order to ensure an eddy-
permitting ocean model and resolve the coastal shelf waters, while balancing computational resources. The
domain covers the Arctic Ocean and the Atlantic Ocean to approximately 208S. The model domain is shown
in Figure 3.

The dynamics of the sea-ice model is driven by drag from wind and ocean, surface tilt of the ocean, Coriolis
force, and the internal strength of sea ice that will resist movement of the ice pack. The internal strength is
based on the Elastic-Viscous-Plastic (EVP) sea-ice rheology (Hunke, 2001), that originates from the Viscous-
Plastic (VP) described by Hibler (1979). CICE includes multiple categories of sea ice within each gridded cell

Figure 2. Example of a L4 SST/IST analysis field for 1 March 2013. Colorbar indi-
cates the temperature. The black contour line shows the sea-ice concentration
of 15%, which separates the IST and the SST.
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in order to be able to describe the inhomogeneity. The setup for these
experiments includes five ice thickness categories defined according
to Lipscomb (2001) (see Table 2).

The thermodynamics of CICE prescribes a vertical temperature profile
with a resolution of four layers of sea ice and one layer of snow for
each sea-ice category (Bitz & Lipscomb, 1999). Snow is very important
for the thermodynamics of sea ice as it insulates sea ice from the
atmosphere. The lower boundary is governed by the upper ocean
temperature which normally is at the freezing point (tfrz) as defined in
equation (5), where s is the salinity measured in practical salinity unit
(psu):

tfrz520:054 � s (5)

The upper boundary is governed by the heat transfer from the atmo-
sphere. The net heat flux is calculated based on the 2 m atmospheric
temperature, humidity, incoming long and short wave radiation, and
10 m wind all provided by ERA-Interim (Dee et al., 2011) and the state
of the surface of the sea-ice model. These inputs are converted to four
components of the net heat flux, namely latent heat, sensible heat,
net shortwave radiation, and net longwave radiation. Due to the harsh
environment in situ observations needed for validation have limited
temporal and spatial resolution. In consequence, the uncertainty of
the atmospheric forcing is generally high and improved control of the
upper boundary is thus desirable.

The ocean model, HYCOM v2.2.98, explores a hybrid vertical coordinate system, combining isopycnals with
z-level coordinates and sigma coordinates. The vertical mixing is defined by the K-Profile Parameterization
(KPP) scheme (Large et al., 1994). The DMI setup of HYCOM has 40 vertical levels and the atmospheric forc-
ing originates from ERA-Interim as it is the case for the sea-ice model.

The model is initialized in summer 1997 with a combined climatology, using the Polar Science Center
Hydrographic Climatology (PHC; Steele et al., 2001) in the Arctic and World Ocean Atlas 2001 0.258 (Conk-
right et al., 2002) in the Atlantic, with a 100 km linear transition. The model domain has two open bound-
aries in the Bering Strait and South Atlantic Ocean, where temperature and salinity are prescribed from the
combined climatology, while a constant barotropic component was prescribed at the boundaries. Similarly,
tidal forcing is prescribed from Oregon State University TOPEX/Poseidon Global Inverse Solution (TPXO 8.2)
(Egbert & Erofeeva, 2002). Tides are induced at the boundary and internally within the ocean model using
eight constituents with periods of approximately 12 and 24 h.

The assimilation of sea ice and SST within the model system is based on the nudging scheme described in
equation (6):

Anewmod5ð12aÞ � Aoldmod1aAobs (6)

‘‘A’’ is the parameter being assimilated and a is a weight function defined by equation (7). This parameter
must be in the range between 0 and 1:

Figure 3. SST and sea-ice thickness for the model domain. Gray is land and
white is ocean outside of the domain. The horizontal colorbar indicates the SST
in all areas with ice concentration less than 30%. The vertical colorbar describes
the ice thickness in areas where the ice concentration is larger than 30%. The
black line indicates the 30% ice concentration based on OSI-SAF.

Table 2
List of the Five Sea-Ice Categories Used in the Model

Category Open water (cm) 1 (cm) 2 (cm) 3 (cm) 4 (cm) 5 (cm)

Min thickness 0 0 60 140 240 360
Mean thickness 0 30 100 190 300
Max thickness 0 60 140 240 360

Note. Category 5 is not bounded.
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a5
dt

E � sday
(7)

where dt is the time step of the model, E is the e-folding time in days, which is set to 10 for both SST and
sea ice. sday is seconds per day (86,400 s/d).

Observations of sea-ice concentration assimilation are based on OSI-SAF (Eastwood et al., 2011). Only
nonflagged OSI-SAF reprocessed sea-ice observations are used, therefore sea ice is not assimilated in a
20–50 km zone near the coast where the satellite observations are affected by land. We also do not assim-
ilate where the modeled and observed sea-ice concentration agree within 10%, to limit observationally
induced noise effects. In these areas, the sea-ice concentrations are determined purely by the sea-ice
model physics. In order to maintain the same distribution of ice categories the constant, cassim is defined
in equation (8)

cassim5
Anewmod

Aoldmod
(8)

For each sea-ice state variable that is corrected (ice concentration, ice thickness, snow thickness, and the
snow/sea-ice energy) the new value for each category is described in equation (9). The aim is to keep the
ice thickness, snow thickness, and the energy per volume of snow and ice constant:

Anewmod;i5cassim � Aoldmod;i (9)

Index i is the category from 1 to 5. This method of estimating the ice thickness is similar to the one labeled
as ‘‘red’’ in Smith et al. (2016). Here it was recognized that this method could add too much sea-ice volume
to the system in cases where the thinnest ice category was removed for the wrong reasons.

Observed SST used for assimilation originates from the Operational SST and Sea Ice Analysis (OSTIA) system
(Donlon et al., 2011) for 1997–2010. From 2011 and onward SST originates from the global DMI_OI Level 4
analysis (Høyer et al., 2014). Surface salinity is relaxed toward climatology with a 30 day relaxation time.
More than 100 rivers are included as monthly climatological discharges obtained from the Global Runoff
Data Centre (GRDC, http://grdc.bafg.de) and scaled as prescribed by Dai and Trenberth (2002). In addition
we have merged the data set using globally gridded Core v2 runoff data (Large & Yeager, 2008) for Green-
land, the Canadian Archipelago, Svalbard, and islands within the Arctic Ocean. Finally for the Faroe Islands,
data from the hydrological catchment model HYPE (Lindstr€om et al., 2010) are used.

4. Method and Experiments

Three different estimates of IST are used within the experiments and the validation of these. Each source
has different characteristics, which are listed in Table 3.

The remotely sensed IST is the temperature of the top few microns of the surface. Due to the large temporal
variations of this temperature, direct assimilation requires firm knowledge of the timing of the observations.
The modeled IST is primarily determined by input from an atmospheric model and the ability of the model
to convert this to a net heat flux. The observational constraints on the atmospheric forcing are limited, thus
it is expected that there are biases within the forcing. The approach chosen for this study is therefore to do
a bias correction, based on the difference between the observed and the modeled IST, and to apply this to
the atmospheric temperatures that are used to force the coupled ocean and sea-ice model.

Table 3
Description of Data Sources Used in These Experiments

Type of data Model Buoys Remote sensed

Frequency (hours) 1 6 24
Valid Snapshot Snapshot 72 h average
Comments Gridded 2-D lat, lon, and time, point data Gridded 2-D

Note. The columns describe the update frequency, the duration each update covers and whether it is a point obser-
vation or a grid average.
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Four different model experiments have been carried out in order to
assess the impact of the correction. The experiments start from a
model hindcast that was initiated in 2004. The hindcast assimilates ice
concentration and SST. On 1 August 2012, all four experiments were
started with characteristics as described in Table 4.

Experiments AC-NI and AC-AI are designed to assess the difference
between the current operational setup and the operational setup,
plus the atmospheric correction using the L4 IST product. Experiments
AC-NI and AC-AI both assimilate ice concentration, and as a result of
this the ice concentration is partly predefined. Therefore, experiments
NC-NI and NC-AI are designed to assess the effect of the correction of

the atmospheric temperatures without the assimilation of the ice concentration. The steps are outlined in
the list below and carried out for both of the baseline experiments (AC-NI and NC-NI).

1. Modeled IST data available every hour from experiment AC-NI or NC-NI are averaged for 72 h centered
around the times where remote sensing data are available. This assumes that the observations are spread
equally across the entire period, which is not necessarily the case. This corresponds to the black line of
Figure 4.

2. The difference between the remotely sensed IST (red line, Figure 4) and the modeled IST (black line, Fig-
ure 4) is found. Based upon the limited conclusions from the ground truth (IST from buoys, described in
sections 5.3 and 5.4), the satellite and the model results are prescribed a similar error. Therefore, the cor-
rection is set to half the difference of the modeled and the observed IST, as defined in

D5
modIST 2obsIST

2
(10)

3. The 2 m temperature of the atmosphere (magenta line, Figure 4) generally correlates well with the mod-
eled IST (black line, Figure 4). Therefore, the obtained D is interpolated to the time step of the atmo-
spheric forcing (3 hourly) and used to correct the atmospheric temperatures where the modeled sea-ice
concentration exceeds 85% as described in

t2mnew5t2mold2D (11)

where t2m is the atmospheric 2 m temperature.
4. Experiments AC-NI and NC-NI have been repeated with the updated atmospheric temperature as experi-

ments AC-AI (blue line, Figure 4) and NC-AI. The period for the experiments is the 1 August 2012 to the 1
August 2013.

5. The result of experiment AC-AI is shown as the green line in Figure 4.

Table 4
Simulations Carried Out and the Data That is Included

Exp Ice concentration IST correction

AC-NI Yes No
NC-NI No No
AC-AI Yes Yes
NC-AI No Yes

Note. All experiments include SST assimilation over open ocean. Acronyms
are: assimilate ice concentration (AC), assimilate IST (AI), no assimilation of
ice concentration (NC), and no assimilation of IST (NI).

Figure 4. Time series of atmospheric forcing temperatures before the corrections (experiment AC-NI, magenta) and after
the correction (experiment AC-AI, blue). Also shown are IST from the reference experiment AC-NI (black line), the experi-
ment with corrected forcing (green) and the observed IST based on remote sensing observations (red line). All time series
are from a position at 87.18N and 184.58W. The atmospheric forcing is plotted every third hour; both the modeled and
remotely sensed IST are plotted as 72 h averages.
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Figure 4 shows the effect of the atmospheric correction in experiment AC-NI on a selected model grid point
with a varying ice cover. The observed IST is generally colder than the modeled IST. The atmospheric tem-
peratures maintain the variability of the high frequency atmospheric forcing (hours to 1 day) whereas the
low frequency IST observations correct the atmospheric temperatures on longer time scales. In addition
from mid-June and throughout summer, the difference between the atmospheric temperatures before and
after the correction is zero (magenta and blue lines), which is when the ice concentration drops below 85%.

5. Results and Discussion

This section will present and discuss the effect of assimilating remotely sensed ice surface temperatures
into a coupled ocean and ice model based on a correction of the atmospheric surface temperatures. At first,
focus will be on the magnitude of the change in the atmospheric near surface temperatures and the result-
ing ice surface temperatures. Second, the model results will be compared with independent observations
from buoys that drift around the Arctic Ocean sampling temperature profiles of the snow, the ice, and the
upper ocean. Finally, two independent parameters, that forecast skill typically is based on, will be evaluated;
these are the ice concentration and the ice thickness.

5.1. Baseline for IST Corrections
The differences between the observed and the modeled snow or ice surface temperatures are the baseline
for creating the correction to the 2 m air temperature. Figure 5 shows the monthly averaged ice or snow
surface temperatures. The first row is based on the model results, the second row is the observations, and
the last row is the differences (model-obs). The black contour line is the 85% ice concentration, which also
outlines the area where the correction of the atmospheric temperatures is applied.

From Figure 5, it is clear that the modeled surface temperature is significantly warmer than the observations
both in September 2012 and March 2013 with differences exceeding 88C in both months. There are spatial
differences and the MIZ seems to be less biased relative to the remotely sensed IST. In March, parts of the
observed MIZ are warmer than the model. A reason for this could be that the satellite observations in this
area are a mixture of observations from the warm ocean and the cold sea ice, whereas the modeled IST
only represents the ice. One exception from the general picture is the Beaufort Gyre in March. This area is
completely ice covered and the modeled temperatures are a few degrees Celsius colder than the observed
temperatures. This is most likely related to the atmospheric forcing as discussed in section 5.2.

5.2. Atmospheric Temperatures
As explained in section 4, the atmospheric temperatures are corrected using the observed IST fields. Figure
6 shows the original atmospheric 2 m temperatures and the corrections applied based on the differences in
ice surface temperatures shown in Figure 5.

The left column of Figure 6 shows September 2012. It is clear that the assimilation requirement of more
than 85% ice coverage limits the area where the atmospheric correction is applied (see Figure 5a). This
requirement is even more evident in Figures 6c and 6e, where the correction has limited effect. One could
argue that it would be more realistic to use the ice concentration to weight the IST as is done with the
remotely sensed product instead of a hard cut off at 85%.

Figures 6d and 6f show the corrections in March, which are similar for both runs. Both simulations generally
have a negative correction meaning that the corrected 2 m temperature is colder than the original 2 m tem-
perature. It is not surprising that there are biases in the atmospheric reanalysis and that ERA-Interim has a
warm bias as this has been reported in several publications (e.g., Jakobson et al., 2012). This publication
compares observations from a floating ice station from April 2007 to August 2007 and concludes that all
Arctic reanalysis have biases in 2 m temperatures, winds, humidity, etc. The fact that there is a warm bias
makes the approach of a temperature correction with time scales of several days suitable. There is one
exception from this pattern in the area around the Beaufort Gyre where the model is colder than the obser-
vation, thus a warm correction is applied. Figure 6b shows that the area around the Beaufort Gyre is the
coldest area in the atmospheric forcing in March. This spatial variation can also be seen in the modeled IST
of experiment AC-NI (see Figure 5b). The area of the Beaufort Gyre is not significantly colder compared to
for instance the area north of Greenland in the observed IST (see Figure 5d). The reason for this is unknown
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but it could be linked to differences in the modeled ice and snow thicknesses, compared to the true condi-
tions, which may introduce systematic differences in the surface temperatures.

5.3. Validation of the Remotely Sensed IST Product With Respect to Buoys
Validation of satellite-based IST observations against in situ observations is not straightforward. There are
several complicating factors, as described in Dybkjær et al. (2012), such as the data sparseness, the quality
of the observations, and the representativeness of the observations in describing the skin surface tempera-
ture. Recently, efforts have been made to gather more accurate radiometric observations of the tempera-
ture of the sea-ice surface to be used for satellite validations. However, these observations are not available
for the time period when this study has been conducted. Instead, in situ observations used for validation
here include IMB buoys from the North Atlantic Arctic coupling in a changing climate: impacts on ocean

Figure 5. Monthly averages of IST shown for ice concentration larger than 15% based on experiment AC-NI. LEFT COLUMN IS

SEPTEMBER 2012 AND RIGHT COLUMN is March 2013. First row is modeled IST with black contour indicating the 85% ice concentra-
tion, second row is the observed IST, and the last row is the differences (Model-Obs).
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circulation carbon cycling and sea-ice (NAACOS) project, the Alfred Wegener Institute (AWI), the Interna-
tional Arctic Buoy Programme (IABP), and Cold Regions Research and Engineering Laboratory (CRREL) (see
trajectories in Figure 7). The validation results are shown in Table 5.

Before validating the L4 product, the in situ observations are averaged over a temporal window of 72 h,
similar to the satellite aggregation window. The L4 values are extracted for the averaged in situ position,
and the matching satellite versus in situ pairs are used to derive the validation statistics. Table 5 shows

Figure 6. Monthly averaged atmospheric 2 m temperature as obtained from Era-Interim interpolated to the model grid is
shown for (a) September and (b) March. Note the different color scales. Row two shows the mean monthly correction
applied in AC-AI. The third row shows the mean monthly correction applied in NC-AI. Left column is September and the
right column represents March. The correction is calculated as new 2 m temperature 2 old 2 m temperature.
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typically a cold bias of the satellite product when compared against
in situ observations. The mean difference depends to a large degree
on the type of in situ observations, where a closest match is found
for the IABP buoys and the worst match is for the AWI IMBs. Note
that a significant part of the bias may be due to the in situ observa-
tions not reporting the surface temperature. Snow is a very effective
insulator and if the temperature sensors are covered by just a few
centimeters of snow it will usually lead to a significant warming of
the sensor compared to the surface conditions due to an almost per-
manent heat flux from the ocean toward the air. In the case of warm
air convection, the insulation results in a cold bias. Some of the IMBs
have about 10 cm spacing between the temperature sensors, and it
is therefore hard to identify the surface with great accuracy. The
standard deviation of variability also includes the sampling effects
from differences in satellite and in situ sampling. These effects
include the temperature difference between the in situ point mea-
surement and the larger satellite footprints, and the temperature dif-
ferences arising from the in situ observations not measuring the
actual surface skin temperature. In addition, the irregular satellite
sampling compared to the regular in situ observational cycles also
introduces discrepancies that are included in the standard devia-
tions of differences.

In general, the validation results are in agreement with the results
presented in Dybkjær et al. (2012) for the Metop AVHRR ice surface
temperature observations. It is likely that the majority of the differ-
ences arise from differences in the satellite and in situ sampling, and

representativeness effects. The size of these effects may overshadow real algorithm issues, and underlines
the need for good reference data from, e.g., ice mounted infrared radiometers.

5.4. Validation of the Modeled IST Product With Respect to Buoys
The model has been validated against buoys using the same metrics as was described in section 5.3 for the
remotely sensed product. Coincident and colocated time series have been extracted from both model and
buoys in order to compare the results. A more complete picture is calculated using bias, standard deviation,
root mean square (RMS) difference, and the Pearson correlation. These values have been calculated for the
AWI, CRREL, NAACOS, and IABP buoys as described in section 5.3. It should be noted that the approach of
comparing models with buoys and remotely sensed surface temperatures is slightly different, partly due to
different sampling frequencies of the model and the remotely sensed surface temperatures. This means
that the remotely sensed temperatures do not represent the diurnal variations. The results can be seen in
Table 6.

The baseline for the two twin experiments is the experiments without assimilation of IST, namely NC-NI and
AC-NI. Based on Table 6, the bias, standard deviation, and correlations are similar whether or not they
include assimilation of sea ice. The bias in NC-NI varies from 24.48C to 1.78C; however, the standard

Figure 7. Trajectories for buoys that measure surface temperatures between
August 2012 and July 2013. NAACOS, AWI, IABP, and CRREL buoys are shown.
AWI trajectories are hidden underneath the other buoy trajectories.

Table 5
Validation Statistics for the L4 IST Product (L4-In Situ), for the Different Sources of In Situ Observations

Type Number Bias Std. RMS Corr.

IABP 1,792 20.69 5.4 5.4 0.82
CRREL 5,171 22.3 4.8 5.3 0.90
NAACOS 1,367 23.3 4.6 5.7 0.86
AWI 2,261 25.3 2.6 5.9 0.91

Note. Std is the standard deviation of the differences, RMS is the root mean square difference, and Corr is the Pearson
correlation. Validation statistics are grouped according to their origin but are otherwise aggregated across buoys and
locations.
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deviation and the RMS error are smaller and the correlation is higher for the buoys with a warm bias. This
indicates that the quality of the observations with the CRELL and the NAACOS buoys are better. Another
reason for the difference especially in the bias can be the area where the buoys are deployed and drift. The
spatial patterns for IST can be seen in Figure 5f. Table 6 shows that the model has a colder bias compared
to the buoys for the experiments with IST assimilation. This is expected as the surface forcing of these
experiments is colder. This improves the skill in some cases and in other cases it decreases the skill of the
model. In general, the statistics of Tables 5 and 6 cannot be used to point to either the model or the
remotely sensed product to be superior. Thus it is difficult to make a firm validation of the experiments
based on the buoy data. The standard deviation for all four groups of buoys is more or less unchanged in
the two twin experiments (AC-NI, AC-AI) and (NC-NI, NC-AI). This is expected as the assimilation of the IST
is based on averages of 72 h and fast variations are not captured by this. In addition, the buoys are indepen-
dent of both the remotely sensed observations and the modeled surface temperatures. Compared to
Table 5, the standard deviations are smaller with the exception of the AWI buoys. A reason for this can be
that the time stamp of the model output and the buoys are well determined, whereas the time stamp of
the remote sensed temperatures is given as averages of 72 h irregularly sampled satellite observations. An
additional point is that the bias of the experiments with and without assimilation of ice concentration is dif-
ferent. This is a result of the method used when assimilating sea-ice concentration. When sea ice is added
or removed energy is also removed/added. This correction of energy may result in a slight change of the
temperature profile within the ice and snow.

In general, the results can be split in two groups of buoys. The first group consists of CRREL and NAACOS.
These have similar measures and a good correlation. The standard deviation is between 38C and 48C and
slightly reduced in the experiments that include assimilation of IST (AC-AI and NC-AI). The second group is
AWI and IABP buoys which have significantly worse statistics. The results of these cover individual buoys
that have the same statistics as the first group and individual buoys that have more or less no correlation
with the model. A thorough quality filter of these buoys would probably improve the result; however, it is
not always simple to judge whether the buoy suffers from failures (instrumentation, vertical location of the
temperature measurements, etc.) or the statistics reveal real problems with the modeled temperature.

5.5. Temperature Profiles
DMI has deployed eight buoys (labeled as NAACOS) in the Arctic Ocean that measures the temperature profile
of the snow and ice they are mounted in. Four of these have provided useful results and these are, to the
author’s knowledge, the only buoys within the study period that have been manually evaluated. This means
that the interfaces between air, snow, ice, and ocean have been determined with better accuracy based upon
the heating cycle response in the IMBs. In addition, these have a high vertical resolution (2 cm) from the air
throughout the ice and into the waters. Based on this, extra attention has been given to these buoys.

Table 6
Bias (Model-Buoy), Standard Deviation of Differences, RMS and Correlation for the Different Model Experiments Against the
Buoy Observations

Exp. AC-NI Exp. NC-NI

Buoy group N obs Bias Std. RMS Corr. Bias Std. RMS Corr.

AWI 2,909 24.5 4.5 6.3 0.80 24.4 4.4 6.2 0.79
CRREL 11,145 1.3 3.6 3.8 0.96 1.7 3.7 4.1 0.95
IABP 63,809 23.3 8.0 8.6 0.73 23.0 7.9 8.4 0.73
NAACOS 2,591 0.23 3.4 3.4 0.96 0.47 3.2 3.3 0.96

Buoy group N buoys Exp. AC-AI Exp. NC-AI

AWI 2 25.5 4.6 7.2 0.79 25.4 4.6 7.1 0.79
CRREL 13 0.16 3.4 3.4 0.96 0.49 3.5 3.5 0.96
IABP 22 24.3 7.9 9.0 0.74 24.0 7.9 8.9 0.74
NAACOS 4 21.2 3.3 3.5 0.96 20.56 3.1 3.1 0.96

Note. The numbers have been calculated for the time of the experiment (1 August 2012–2013). Trajectories can be
seen in Figure 7. N obs is the number of individual measurements obtained by N buoys.
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The sea-ice model splits the thermodynamic calculations into five horizontal categories for each grid cell
based on the ice thickness. For each category, a vertical profile is produced that consists of one snow tem-
perature and four vertical ice layers. Boundary conditions are prescribed from the atmospheric forcing at
the surface and the ocean temperature at the bottom; thus all variations are local within the ice.

Figure 8 shows the observed and the modeled temperature profiles as functions of time for buoy C from
the NAACOS deployments. The individual trajectories are not shown in this article; however, all tracks can
be found in Figure 7.

Figure 8 shows the annual cycle where the sea-ice temperatures are close to zero in summer and decreas-
ing in winter. The effect of snow as an insulation for the ice pack with much colder winter temperatures

Figure 8. (a) The observed temperature profile from buoy C of the NAACOS deployments. The y axis shows the snow
thickness above zero and the ice thickness below zero in meters. (b–f) The temperature profiles for all categories defined
in Table 2 along the track of NAACOS buoy C. Note that the profiles have been cut off at 5 m depth despite the ice being
thicker in category 5.
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compared to the sea ice is clearly seen in both observation and modeled profiles. The snow layer is
removed during summer when the Arctic surface is characterized by melt ponds and limited snow cover.
The influence of the snow on the temperature profiles of the snow and sea-ice underlines the importance
of understanding the growth and decay of the snow cover; however, this is not a trivial task.

In order to compare with buoys, the model ice category with an ice thickness similar to the buoy is selected.
The temporal evolution of the modeled ice thickness for each category, along with averaged ice thickness
from the buoy and the observations, are shown in Figure 9. It can be seen that the average sea-ice thickness
of each category is near the mean of the intervals in Table 2; exceptions are the thinnest and the thickest
ice categories.

The average ice thickness of the model and the observation is reasonably close to each other; however, the
settings for these two are different as the ice thickness of the model is based on an average of 100 km2,
whereas the buoy is a point measurement. Both model and observations are relatively close to the ice thick-
ness of category 4 (green dashed line in Figure 9). Based on this, the temperature profile of category 4 from
the model is compared with the temperature profile of the buoy. The observed temperature profile is much
finer grained compared to the modeled temperature. Therefore, the observations are interpolated vertically
to the grid of the model with one snow layer and four temperature layers. The difference between the mod-
eled profile of category 4 and the observed profile are shown for all four experiments in Figure 10.

The temperature bias is largest in winter and spring, which confirms the comparisons at the surface of both
remotely sensed observations and buoy surface profiles. The model is generally warmer than the observa-
tions, and the temperature differences are reduced when the position, within the sea ice approaches the
ocean surface. This is not surprising, as the ocean surface temperature is at the freezing point just below
the sea ice. This means that the temperature difference at the bottom of the sea ice is constrained to the
approximation of the freezing point of the surface of the ocean.

Figure 10 shows that the ice thickness increases underneath the buoy but not in category 4 of the model.
This is due to the multicategory approach of the ice model, where the ice thickness of the individual catego-
ries remains constant (see Figure 9) but the relative distribution of the different categories may change. An
important thing to note is that the growth of the snow increases slowly in all four experiments compared to
observations. Snow is added to the grid cells of the model when the atmospheric model prescribes precipi-
tation and when the temperature is lower than 0�C. Therefore, it is assumed that the slow buildup of snow
is caused by rates of precipitation in the atmospheric forcing that are too low. One alternative reason is that
the buoy observes points whereas the model is an average of a large area. Another reason could be that
the buoy may have experienced snow that was redistributed due to winds. The different scales may cause
problems when comparing the two measures.

An important difference is seen when the snow disappears from the ice surface in the beginning of the
melt season. The two experiments that include surface temperature correction (exp. AC-AI, Figure 10c and

Figure 9. Ice thickness for NAACOS buoy C (see Figure 7). The red solid line shows the average modeled ice thickness.
The solid blue line shows the average observed ice thickness. Dashed lines show the ice thickness of each sea-ice cate-
gory described in Table 2.
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NC-AI, Figure 10d) show a better timing of the reduction of the snow cover. The snow cover is reduced
when the temperature reaches 08C. As a result, the temperature correction improves the timing of the melt
season. This also removes a warm bias within the upper part of the sea ice. This conclusion would be stron-
ger if there were more available buoy observations with temperature profiles covering the full season.

5.6. Ice Concentration
The sea-ice concentration and the ice thickness are important physical variables as these have huge opera-
tional (e.g., shipping) and climate impact. In relation to short term forecasting these determine whether a
ship is able to pass through an area or not. Sea-ice concentration is the parameter which can best be deter-
mined both from ice charts, and from automated retrievals using primarily microwave sensors which results
in good estimates of the ice cover especially in winter time. There are two main drivers for the sea-ice con-
centration and the sea-ice thickness. These are the thermodynamics and the ice dynamics. This study only
deals with the thermodynamics and corrections of the bias of the upper boundary condition (air versus ice
and snow surface temperature). Figure 11 shows the ice concentration of the four experiments and the dif-
ferences with and without assimilation. The black contour is OSI-SAF sea-ice concentration of 15%.

There is generally a good match with OSI-SAF data for all four experiments. The match is slightly better for
experiments AC-NI and AC-AI, which is expected as these experiments use ice concentration for assimila-
tion. Applying IST assimilation (AC-NI to AC-AI) results in a slight increase in the ice concentration near the
coast of Alaska and the margin between the Laptev Sea and the Kara Sea. These are areas with medium
range ice concentrations in experiment AC-NI.

There is a clear effect on the sea-ice concentration between the two experiments without assimilation of ice
concentration (NC-NI and NC-AI) especially near the Bering Strait. The effect is most prominent within the

Figure 10. The difference (MOD-OBS) between category 4 of all four experiments and the observed temperature profile is
shown for NAACOS buoy C, see Figure 7. (a) AC-NI, (b) AC-AI, (c) NC-NI, and (d) NC-AI. The dashed lines indicate the air-
snow, snow-ice, and ice-water interfaces, as observed by buoy C. The observations have been interpolated to the layers of
the model assuming a constant temperature throughout each layer.
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ice pack, where the criterion of an ice concentration of 85% is fulfilled. This shows that there is an effect of
assimilating IST in the model and that it results in an increase in the ice concentration, which seems realistic.
The following sections will discuss the influence further.

5.7. Ice Thickness
The ice thickness represents the memory of the system; however, accurate ice thickness observations are
mainly available outside the melt season. Remotely sensed ice thickness based on SMOS (Kaleschke et al.,
2012) and Cryosat-2 (Laxon et al., 2013) are available from October to April with full Arctic coverage. In

Figure 11. Monthly mean fractional sea-ice concentration in July 2013 for the four experiments from Table 4. (a) AC-NI,
(b) AC-AI, (c) NC-NI, and (d) NC-AI. (e) ((AC-NI) 2 (AC-AI)) and (f) ((NC-NI) 2 (NC-AI)) show the effect of IST assimilation on
the sea-ice concentration. The black contour is OSI-SAF ice concentration of 15%.

Journal of Geophysical Research: Oceans 10.1002/2017JC013481

RASMUSSEN ET AL. 17



addition, Operation Ice Bridge (OIB) observes along selected flight tracks in March/April. The difference in
ice thickness between the experiments with and without corrections of the atmospheric forcing is limited
to winter of this 1 year experiment (see Figure 12b). Therefore, this analysis will not try to judge which
experiment has the best distribution, but simply show and describe the changes. The four experiments and
the differences between experiments AC-NI/AC-AI and NC-NI/NC-AI are shown in Figure 12.

The ice thickness of the experiments including assimilation of sea-ice concentration (Figures 12a and 12c) is
generally thicker and the brown colored region extends further into the central Arctic than the two

Figure 12. Monthly mean sea-ice thickness in July 2013. (a) Experiment AC-NI, (b) exp NC-NI, (c) exp AC-AI, and (d) exp
NC-AI. Figure 12e (exp AC-NI 2 exp AC-AI) and 12f (exp NC-NI 2 exp NC-AI) show the difference in ice thickness between
the experiments without IST assimilation and the experiments with IST assimilation.
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experiments without the ice concentration assimilation (Figures 12b
and 12d). This confirms the general impression that the model is too
warm. The assimilation of ice concentration also minimizes the reduc-
tion of the ice thickness. Another reason for the increased ice thick-
ness with assimilation of ice concentration is described in Smith et al.
(2016), where the method labeled as ‘‘red’’ is similar to the method
used in this study. The article describes how adding ice concentration
can add ice volume. Both with and without assimilation of ice concen-
tration the ice thickness just north of the Canadian Archipelago is
increased by up to 0.4 m. The effect of the surface temperature correc-
tion is generally largest for the experiments without ice assimilation.
The increase of ice thickness is seen in large parts of the Arctic Ocean.

5.8. Ice Cover and Ice Volume
The integrated model ice cover and ice volume for the four experi-
ments and OSI-SAF have been derived. As the model does not cover
the ice covered areas on the Pacific side of Bering Strait this area has
been filtered out from the OSI-SAF ice cover to allow for intercompari-
sons of the integrated values. The results can be seen in Figure 13.

From approximately August to October, both the ice cover and the ice
volume based on the experiments without assimilation are reduced
compared to the ice cover and volume with sea-ice assimilation. From
October to November, the ice concentration for the sea-ice assimi-
lated experiments is slightly smaller compared to OSI-SAF. This is due
to the relatively weak assimilation. During winter, the atmosphere is
sufficiently cold to bring the ice cover to the same level as it is for the

observations based on OSI-SAF. The difference between the ice volume of the two different twin experi-
ments shows that the volume has a longer memory and that the difference in volume is more or less con-
stant. From June, or approximately the beginning of the melt season, the ice concentration is reduced
slightly faster in the experiments with assimilation of ice concentration. From July NC-NI reduces the ice
cover faster than the other experiments, and by the end of July the ice cover is similar to the ice cover of
AC-NI and AC-AI. From June onward, the ice volume of NC-AI and AC-AI is reduced slightly slower compared
to the corresponding results of NC-NI and AC-NI. The result is that experiments AC-NI and NI-AC have
approximately the same ice volume. This indicates that the effect of the ice temperature assimilation on the
ice concentration and the volume is largest in summer, where a small change of the heat flux balance may
change conditions from melting to freezing.

6. Conclusions

This study demonstrates an innovative approach for combining several different satellite IST products into a
multisensor, gap-free, interpolated L4 SST, and IST product. Given the satellite sampling characteristics, the
warm biased atmospheric forcing, and the operational ocean and sea-ice model physics, these data were
considered suitable for assimilation into an operational model as a bias correction. We found that the bias
correction of satellite ISTs improved the timing of snow melt over sea ice and as a consequence of this it
improved the temperature profile of the snow and sea ice. This conclusion is only based on comparison
with one buoy, thus it may be stronger if more buoys were included in the comparison. The remotely
sensed IST is generally colder than the modeled IST based on experiments AC-NI and NC-NI; however, there
are spatial and temporal differences. This mainly results is a negative correction to the atmospheric 2 m
temperature. As a consequence of this, the ice thickness increased from June and throughout the summer
when the snow melts and the temperature approaches freezing point. The ice cover is only increased from
experiments NC-NI to NC-AI as experiments AC-NI and AC-AI assimilate the ice cover directly. Quantifying
the impact of IST assimilation remains challenging due to the quality and limited number of in situ observa-
tions routinely made in polar environments. Future studies could look at multiyear model runs assimilating
IST, with focused campaigns for gathering in situ data at higher spatial and temporal resolution. In addition,

Figure 13. (a) The integrated sea-ice cover throughout the period of the
experiments. Grid cells with ice cover less than 15% have been excluded.
(b) The integrated ice volume.
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the temporal variation of IST is relatively high compared to the differences in IST. Thus it would be beneficial
to use level-2 data for the assimilation in order to be able to collocate the modeled and observed IST in
time.
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